code FIELD2 FIELD3 $\quad$ code FIELD6 FIELD7
\mathbb{X} $\mathbb{X}$ $\quad$ \alpha Alpha α
\frac{1}{n} $\frac{1}{n}$ $\quad$ \beta Beta β
\bigcup_{i=1}^n $\bigcup_{i=1}^n$ $\quad$ \gamma Gamma γ
\sum_{i=1}^n $\sum_{i=1}^n$ $\quad$ \delta Delta δ
\sqrt[4]{81} $\sqrt[4]{81}$ $\quad$ \epsilon Epsilon ϵ
\lim_{x \to \infty} $\lim_{x \to \infty}$ $\quad$ \zeta Zeta ζ
\underset{\text{below}}{\xrightarrow{\text{above}}} $\underset{\text{below}}{\xrightarrow{\text{above}}}$ $\quad$ \eta Eta η
$\quad$ \theta Theta θ
\lvert x \rvert $\lvert x \rvert$ $\quad$ \iota Iota ι
\langle x \rangle $\langle x \rangle$ $\quad$ \kappa Kappa κ
$\quad$ \lambda Lambda λ
\neq not equal $\neq$ $\quad$ \mu Mu μ
\leq less than or equal to $\leq$ $\quad$ \nu Nu ν
\geq greater than or equal to $\geq$ $\quad$ \xi Xi ξ
\lt less than $\lt$ $\quad$ o Omicron o
\gt greater than $\gt$ $\quad$ \pi Pi π
$\quad$ \rho Rho ρ
\infty $\infty$ $\quad$ \sigma Sigma σ
$\quad$ \tau Tau τ
\perp independent $\perp$ $\quad$ \upsilon Upsilon υ
\in $\in$ $\quad$ \phi Phi ϕ
\notin $\notin$ $\quad$ \chi Chi χ
\subset $\subset$ $\quad$ \psi Psi ψ
\supset $\supset$ $\quad$ \omega Omega ω
\cup $\cup$ $\quad$ A Alpha A
\sim ~ $\sim$ $\quad$ B Beta B
$\quad$ \Gamma Gamma Γ
\quad Large Space $\quad$ $\quad$ \Delta Delta Δ
\qquad Extra Large Spac $\qquad$ $\quad$ E Epsilon E
, Small Space $,$ $\quad$ Z Zeta Z
; Medium Space $;$ $\quad$ H Eta H
\text{Xxxx} $\text{xxxx}$ $\quad$ \Theta Theta Θ
$\quad$ I Iota I
\hat{L} ^ $\hat{L}$ $\quad$ K Kappa K
\tilde{x} ~ $\tilde{x}$ $\quad$ \Lambda Lambda Λ
\bar{x} - $\bar{x}$ $\quad$ M Mu M
\overline{x+y} _ $\overline{x+y}$ $\quad$ N Nu N
\dot{x} . $\dot{x}$ $\quad$ \Xi Xi Ξ
\ddot{x} .. $\ddot{x}$ $\quad$ O Omicron O
\check{x} ˇ $\check{x}$ $\quad$ \Pi Pi Π
\breve{x} ˘ $\breve{x}$ $\quad$ P Rho P
\acute{x} ˊ $\acute{x}$ $\quad$ \Sigma Sigma Σ
\grave{x} ˋ $\grave{x}$ $\quad$ T Tau T
\vec{x} $\vec{x}$ $\quad$ Y Upsilon Y
\cdot . $\cdot$ $\quad$ \Phi Phi Φ
$\quad$ X Chi X
\to Right arrow (standard) $\to$ $\quad$ \Psi Psi Ψ
\sim Similar to (used for approximation) $\sim$ $\quad$ \Omega Omega Ω
\leadsto Leads to (used for weak implication) $\leadsto$ $\quad$
\rightsquigarrow Squiggly right arrow (approximation or convergence) $\rightsquigarrow$ $\quad$
\approx Approximately equal $\approx$ $\quad$
\uparrow $\uparrow$ $\quad$
\downarrow $\downarrow$ $\quad$
\updownarrow $\updownarrow$ $\quad$
\mapsto $\mapsto$ $\quad$
\dashrightarrow $\dashrightarrow$ $\quad$
\longrightarrow $\longrightarrow$ $\quad$
\longleftarrow $\longleftarrow$ $\quad$
\leftarrow $\leftarrow$ $\quad$
\Rightarrow $\Rightarrow$ $\quad$
\Leftarrow $\Leftarrow$ $\quad$
\leftrightarrow $\leftrightarrow$ $\quad$
\Leftrightarrow $\Leftrightarrow$ $\quad$