GAN

Important: The generative model presented in this article comes from an assignment in USC EE660, a course taught by Professor Stephen Lyle Tu. Since I skipped some prerequisite ML courses, my foundational understanding of ML principles is not particularly strong, and I am not particularly interested in ML theory. As a result, my grade in this course was relatively low. However, Professor Stephen still put a great deal of effort into this course, teaching the theoretical foundations of many algorithms. Although theory can be dry, it is indeed a crucial part of understanding algorithms! I highly recommend taking this course—don’t worry about your GPA; just learn what you want to learn.

It is important to note that the generative model presented in this article is very simple. You don’t even need to implement the model yourself; you can simply use the corresponding libraries. Using open-source libraries is much more convenient. This article aims to highlight some finer details of generative algorithms. Additionally, simply calling GPT can generate similar code.

重要:本文展示的生成式模型来自USC EE660的作业。该科程来自Stephen Lyle Tu。由于我跳过了一些ML的前置科程,一些ML的基础原理并没有特别扎实,并且我对ML的理论知识其实并不感兴趣。所以我这门课程的分数较低。但是Pro Stephen依旧在这门科程上付出了许多心血。教授了许多算法的理论基础。尽管理论是枯燥的,但这确实是理解算法特别重要的一环!我强烈推荐去上这门课。不要担心自己的GPA。想学什么就学什么。
需要注意的是本文展示的生成式模型是十分简单的,你甚至不用自己去实现这个模型,直接去使用对应的库就可以。使用开源库更加方便,此文指在展示生成式算法的一些细枝末节。并且简单的调用GPT也可以生成出这种代码。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

# Define Generator
class Generator(nn.Module):
def __init__(self, input_dim, output_dim):
super(Generator, self).__init__()
self.model = nn.Sequential(
nn.Linear(input_dim, 256),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(256),
nn.Linear(256, 512),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(512),
nn.Linear(512, 512),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(512),
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.BatchNorm1d(256),
nn.Linear(256, output_dim),
)

def forward(self, z):
return self.model(z)

# Define Discriminator
class Discriminator(nn.Module):
def __init__(self, input_dim):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(input_dim, 512), # 增加神经元数量
nn.LeakyReLU(0.2),
nn.Linear(512, 256),
nn.LeakyReLU(0.2),
nn.Linear(256, 128),
nn.LeakyReLU(0.2),
nn.Linear(128, 64),
nn.LeakyReLU(0.2),
nn.Linear(64, 1),
nn.Sigmoid()
)

def forward(self, x):
return self.model(x)

# Generate training data
def generate_checkerboard(*, num: int, rng: np.random.Generator) -> np.ndarray:
x1 = rng.uniform(size=num) * 4 - 2
x2_ = rng.uniform(size=num) - rng.choice([0, 1], size=(num,)) * 2
x2 = x2_ + (np.floor(x1) % 2)
x = np.hstack([x1[:, None], x2[:, None]]) * 2
return x

# Training Data
X_train = generate_checkerboard(num=2000, rng=np.random.default_rng())
X_train = torch.tensor(X_train, dtype=torch.float32)

# Hyperparameters
z_dim = 20
lr_g = 0.0002
lr_d = 0.0001
batch_size = 512
epochs = 40000

# Initialize models
generator = Generator(input_dim=z_dim, output_dim=2)
discriminator = Discriminator(input_dim=2)

g_optimizer = optim.Adam(generator.parameters(), lr=lr_g, betas=(0.7, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=lr_d, betas=(0.7, 0.999))
loss_fn = nn.BCELoss()

# Training loop
for epoch in range(epochs):
# Sample real data
idx = torch.randint(0, X_train.shape[0], (batch_size,))
real_data = X_train[idx]

# Sample noise
z = torch.randn(batch_size, z_dim) * 8

# Generate fake data
fake_data = generator(z)

# Train Discriminator
d_optimizer.zero_grad()
real_labels = torch.ones(batch_size, 1)
fake_labels = torch.zeros(batch_size, 1)

real_loss = loss_fn(discriminator(real_data), real_labels)
fake_loss = loss_fn(discriminator(fake_data.detach()), fake_labels)
d_loss = real_loss + fake_loss
d_loss.backward()
d_optimizer.step()

# Train Generator
g_optimizer.zero_grad()
g_loss = loss_fn(discriminator(fake_data), real_labels) # Flip labels
g_loss.backward()
g_optimizer.step()

if epoch % 500 == 0:
print(f"Epoch {epoch}, D Loss: {d_loss.item()}, G Loss: {g_loss.item()}")

# Generate new data
z = torch.randn(1000, z_dim) * 2
generated_data = generator(z).detach().numpy()

# Plot results
plt.scatter(X_train[:, 0], X_train[:, 1], label='Real Data', alpha=0.3)
plt.scatter(generated_data[:, 0], generated_data[:, 1], label='Generated Data', alpha=0.3)
plt.legend()
plt.show()